Product datasheet

Anti-Tau antibody ab64193

Overview

<table>
<thead>
<tr>
<th>Product name</th>
<th>Anti-Tau antibody</th>
</tr>
</thead>
<tbody>
<tr>
<td>Description</td>
<td>Rabbit polyclonal to Tau</td>
</tr>
<tr>
<td>Host species</td>
<td>Rabbit</td>
</tr>
<tr>
<td>Specificity</td>
<td>ab64193 recognizes both non-phosphorylated and phosphorylated Ser262.</td>
</tr>
</tbody>
</table>
| Tested applications| Suitable for: ICC, WB, Dot blot, ICC/IF, IHC-FoFr  
Unsuitable for: IHC-P |
| Species reactivity | Reacts with: Mouse, Cow, Human, Zebrafish, Apteronotus leptorhynchus  
Predicted to work with: Rat |
| Immunogen          | Synthetic peptide corresponding to Human Tau aa 576-583.  
Sequence:  
KIGSTENL |
| Positive control   | Recombinant Human Tau412 protein (ab125484) can be used as a positive control in WB.  
Mouse brain tissue lysate. |
| General notes      | Abcam is committed to meeting high standards of manufacturing and has decided to discontinue this product once the stock runs out as we are unable to secure its future high-quality supply. We suggest ab32057 or ab80579 as possible replacements. We are sorry for any inconvenience this may cause. |

Properties

<table>
<thead>
<tr>
<th>Form</th>
<th>Liquid</th>
</tr>
</thead>
</table>
| Storage buffer  | pH: 7.40  
Preservative: 0.05% Sodium azide  
Constituents: 99% PBS, 0.5% BSA |
| Purity          | Immunogen affinity purified |
| Clonality       | Polyclonal |
| Isotype         | IgG |

8 Abreviews   44 References   5 Images
**Application notes**  
Is unsuitable for IHC-P.

**Target**  

**Function**  
Promotes microtubule assembly and stability, and might be involved in the establishment and maintenance of neuronal polarity. The C-terminus binds axonal microtubules while the N-terminus binds neural plasma membrane components, suggesting that tau functions as a linker protein between both. Axonal polarity is predetermined by tau localization (in the neuronal cell) in the domain of the cell body defined by the centrosome. The short isoforms allow plasticity of the cytoskeleton whereas the longer isoforms may preferentially play a role in its stabilization.

**Tissue specificity**  
Expressed in neurons. Isoform PNS-tau is expressed in the peripheral nervous system while the others are expressed in the central nervous system.

**Involvement in disease**  
Note=In Alzheimer disease, the neuronal cytoskeleton in the brain is progressively disrupted and replaced by tangles of paired helical filaments (PHF) and straight filaments, mainly composed of hyperphosphorylated forms of TAU (PHF-TAU or AD P-TAU). Defects in MAPT are a cause of frontotemporal dementia (FTD) [MM:600274]; also called frontotemporal dementia (FTD), pallido-ponto-nigral degeneration (PPND) or historically termed Pick complex. This form of frontotemporal dementia is characterized by presenile dementia with behavioral changes, deterioration of cognitive capacities and loss of memory. In some cases, parkinsonian symptoms are prominent. Neuropathological changes include frontotemporal atrophy often associated with atrophy of the basal ganglia, substantia nigra, amygdala. In most cases, protein tau deposits are found in gial cells and/or neurons. Defects in MAPT are a cause of Pick disease of the brain (PIDB) [MIM:172700]. It is a rare form of dementia pathologically defined by severe atrophy, neuronal loss and gliosis. It is characterized by the occurrence of tau-positive inclusions, swollen neurons (Pick cells) and argentophilic neuronal inclusions known as Pick bodies that disproportionately affect the frontal and temporal cortical regions. Clinical features include aphasia, apraxia, confusion, anemia, memory loss and personality deterioration. Note=Defects in MAPT are a cause of corticobasal degeneration (CBD). It is marked by extrapyramidal signs and apraxia and can be associated with memory loss. Neuropathologic features may overlap Alzheimer disease, progressive supranuclear palsy, and Parkinson disease. Defects in MAPT are a cause of progressive supranuclear palsy type 1 (PSNP1) [MIM:601104].
260540); also abbreviated as PSP and also known as Steele-Richardson-Olszewski syndrome. PSNP1 is characterized by akinetic-rigid syndrome, supranuclear gaze palsy, pyramidal tract dysfunction, pseudobulbar signs and cognitive capacities deterioration. Neurofibrillary tangles and gliosis but no amyloid plaques are found in diseased brains. Most cases appear to be sporadic, with a significant association with a common haplotype including the MAPT gene and the flanking regions. Familial cases show an autosomal dominant pattern of transmission with incomplete penetrance; genetic analysis of a few cases showed the occurrence of tau mutations, including a deletion of Asn-613.

<table>
<thead>
<tr>
<th>Sequence similarities</th>
<th>Contains 4 Tau/MAP repeats.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Developmental stage</td>
<td>Four-repeat (type II) tau is expressed in an adult-specific manner and is not found in fetal brain, whereas three-repeat (type I) tau is found in both adult and fetal brain.</td>
</tr>
<tr>
<td>Domain</td>
<td>The tau/MAP repeat binds to tubulin. Type I isoforms contain 3 repeats while type II isoforms contain 4 repeats.</td>
</tr>
<tr>
<td>Post-translational modifications</td>
<td>Phosphorylation at serine and threonine residues in S-P or T-P motifs by proline-directed protein kinases (PDPK: CDK1, CDK5, GSK-3, MAPK) (only 2-3 sites per protein in interphase, seven-fold increase in mitosis, and in PHF-tau), and at serine residues in K-X-G-S motifs by MAP/microtubule affinity-regulating kinase (MARK) in Alzheimer diseased brains. Phosphorylation decreases with age. Phosphorylation within tau's repeat domain or in flanking regions seems to reduce tau's interaction with, respectively, microtubules or plasma membrane components. Phosphorylation on Ser-610, Ser-622, Ser-641 and Ser-673 in several isoforms during mitosis. Polyubiquitinated. Requires functional TRAF6 and may provoke SQSTM1-dependent degradation by the proteasome (By similarity). PHF-tau can be modified by three different forms of polyubiquitination. 'Lys-48'-linked polyubiquitination is the major form, 'Lys-6'-linked and 'Lys-11'-linked polyubiquitination also occur. Glycation of PHF-tau, but not normal brain tau. Glycation is a non-enzymatic post-translational modification that involves a covalent linkage between a sugar and an amino group of a protein molecule forming ketoamine. Subsequent oxidation, fragmentation and/or cross-linking of ketoamine leads to the production of advanced glycation endproducts (AGES). Glycation may play a role in stabilizing PHF aggregation leading to tangle formation in AD.</td>
</tr>
<tr>
<td>Form</td>
<td>There are 9 isoforms produced by alternative splicing.</td>
</tr>
<tr>
<td>Images</td>
<td></td>
</tr>
</tbody>
</table>

| Images | |

3
Western blot - Anti-Tau antibody (ab64193)

This image is courtesy of an anonymous Abreview

Anti-Tau antibody (ab64193) at 1/100 dilution + Mouse brain whole tissue lysate at 120 µg

Secondary

HRP-conjugated goat anti-rabbit IgG polyclonal at 1/10000 dilution

Developed using the ECL technique.

Performed under reducing conditions.

Predicted band size: 79 kDa
Observed band size: 52 kDa

why is the actual band size different from the predicted?

Exposure time: 5 minutes

Immunohistochemical analysis of *Apteronotus leptorhynchus* brain tissue, staining Tau with ab64193.

Tissue was fixed with paraformaldehyde, permeabilized with 0.3% Triton X-100 and blocked with 3% sheep serum (ab7489), 1% BSA and 1% teleostean gelatine in TBS for 1 hour at 24°C. Samples were incubated with primary antibody (1/20 in blocking solution) for 18 hours at 4°C. An AlexaFluor®546-conjugated goat anti-rabbit polyclonal IgG (1/200) was used as the secondary antibody.

Immunohistochemistry (PFA perfusion fixed frozen sections) - Anti-Tau antibody (ab64193)

This image is courtesy of an anonymous Abreview

Immunocytochemistry of Zebrafish Cultured Cells (primary neuron), labelling Tau with ab64193.

Immunocytochemistry - Anti-Tau antibody (ab64193)

This image is courtesy of Andy Grierson, University of Sheffield Medical School, United Kingdom
Immunocytochemistry/Immunofluorescence analysis of mouse primary cortical neuronal cells labeling Tau with ab64193 at a dilution of 1/100. The cells were fixed with Ethanol and permeabilized with 0.2% Triton X-100. An AlexaFluor®488-conjugated goat anti-rabbit polyclonal IgG (1/200) was used as the secondary antibody.

Antibody (ab64193) at 1/200 dilution + Mouse brain tissue lysate at 15 µg

**Predicted band size:** 79 kDa

**Observed band size:** 52 kDa

*why is the actual band size different from the predicted?*

Please note: All products are "FOR RESEARCH USE ONLY. NOT FOR USE IN DIAGNOSTIC PROCEDURES"

**Our Abpromise to you: Quality guaranteed and expert technical support**

- Replacement or refund for products not performing as stated on the datasheet
- Valid for 12 months from date of delivery
- Response to your inquiry within 24 hours
- We provide support in Chinese, English, French, German, Japanese and Spanish
- Extensive multi-media technical resources to help you
- We investigate all quality concerns to ensure our products perform to the highest standards

If the product does not perform as described on this datasheet, we will offer a refund or replacement. For full details of the Abpromise, please visit [https://www.abcam.com/abpromise](https://www.abcam.com/abpromise) or contact our technical team.

**Terms and conditions**

- Guarantee only valid for products bought direct from Abcam or one of our authorized distributors